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Problem-solving Agents

Reflex agents vs. goal-based agents
 Reflex agents cannot operate well in

environments for which the state-action
mapping is hard to store and learn.

Goal-based agents can succeed by considering
future actions and the desirability of their
outcomes.

Problem-solving agents
They are a kind of goal-based agent.
They decide what to do by finding sequences of

actions that lead to desirable states.
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Problem-solving Agents

Intelligent agents are supposed to
maximize their performance measure.

Achieving this is sometimes simplified by
adopting a goal and aim at satisfying it.

The agent’s task is to find out an action
sequence to a set of world states in which
the goal is satisfied.
The process of looking for such a sequence is

called search.
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Problem-solving Agents

 Example: The agent is driving to Bucharest from
Arad.

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.2
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Problem-solving Agents

Goal formulation,
based on the current situation and the
performance measure, is the first step in problem
solving.

Problem formulation
is to decide what actions and states to consider,
given a goal.
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Problem-solving Agents

If the agent has no knowledge, it can just
choose a random road.

If a map is given, it has
 the information about the states it might get

into and
 the actions it can take

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.2
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Problem-solving Agents

“An agent with several immediate options of
unknown value can decide what to do by

first examining different possible
sequences of actions that lead to states of
known value, and then choosing the best
sequence.”
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Problem-solving Agents

Agent design

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.1

Formulate
|

Search
|

Execute
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Problem-solving Agents

Assumptions on the environment in the
previous design
Static (formulation, searching, & execution)
Observable (initial state)
Discrete (enumeration of actions)
Deterministic

We are dealing with a very easy
environment.
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Problem Formulation

A problem can be defined formally by four
components:

 Initial state
 e.g. In(Arad)

 Possible actions
Goal test
 Path cost

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.2
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Problem Formulation

Possible actions
The most common formulation uses a successor

function.
 e.g. From the state In(Arad), the successor

function returns

{<Go(Sibui), In(SIbui)>,
<Go(Timisoara), In(Timisoara)>,
<Go(Zerind), In(Zerind)>}
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Problem Formulation

Possible actions
The initial state and successor function

implicitly define the state space of the
problem –the set of all states reachable from the initial
state.

The state space forms a graph in
which the nodes are states and
arcs are actions.

A path in the state space is
a sequence of states connected
by a sequence of actions.

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.2
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Problem Formulation

Goal test
Sometimes there is an explicit set of possible

goal states.
Sometimes the goal is specified by an abstract

property.
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Problem Formulation

A solution to a problem is a path from the
initial state to a goal state.

An optimal solution has the lowest path
cost among all solutions.

Artificial Intelligence: A Modern
Approach, 2nd ed., Figure 3.2
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Problem Formulation

During formulating a problem,
considerations that are irrelevant to the
problem (including both states and actions) can be
filtered out –abstraction.
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Problem Formulation

The abstraction should be
 valid, so we can expand any abstract solution

into a solution in the more detailed world;
 useful, so the actions can be carried out

without further search or planning.

Were it not for the ability to construct useful
abstractions, intelligent agents would be
completely swamped by the real world.

作得到

方便使用
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Example Problems

Toy problems
Vacuum world
 8-puzzle
 8-queens

Real-world problems
 Route-finding
Touring
VLSI layout
 Robot navigation
Scheduling
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Example Problems

Vacuum world
States: 2 location x {clean, dirty}2 = 8 states
 Initial state: any state can be.
Successor function:

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.3
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Example Problems

Vacuum world
Goal test: This checks whether all squares are

clean.
 Path cost: Each step costs 1.
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Example Problems

8-puzzle
States: locations of eight tiles and the blank
 Initial state: any state can be.
Successor function: left, right, up, down
Goal test: any state can be.
 Path cost: Each step costs 1

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.4
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Example Problems

8-puzzle

Possible?
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Example Problems

8-puzzle
The states are divided into two disjoint sets.
Why?

 Sliding the blank along a row doesn’t change the sum.
 Sliding the blank between rows doesn’t change the

sum%2.

http://www.8puzzle.com/8_puzzle_algorithm.html

The number of smaller digits which are coming after a chosen tile
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Example Problems

8-puzzle
 It belongs to the family of sliding-block puzzles,

known to be NP-complete.

Number of states
 8-puzzle: 9!/2 = 181,400 …very easy
 15-puzzle: 1.3 trillion states …still easy
 24-puzzle: 1025 states …quite difficult
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Example Problems

8-queens (Basic formulation)
States: any arrangement of 0 to 8 queens
 Initial state: no queens on the board
Successor function: add a queen to any empty

square
Goal test: 8 queens on the

board, none attacked
 Path cost: 0

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.5

Note. The formulation here is incremental, we
will see the complete formation later.
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Example Problems

8-queens (Smart formulation)
States:

arrangement of n queens,
one per column in the leftmost n columns,
with no queen attacking another

Successor function:
Add a queen to any square in the leftmost
empty column such that it is not attacked by
any other queen.

This formulation reduces the state
space from 31014 to just 2,057.

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.5
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Searching for Solutions

Searching through the state space
generates a search tree (maybe a search
graph).
 It is important to distinguish between the state

space and the search tree.

state space: states + actions
search tree: nodes + actions
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Searching for Solutions

Artificial Intelligence: A Modern Approach,
2nd ed., Figure 3.2 & 3.6(a)

There are only 20 states in the state space.
But there could be a search tree with infinite
number of nodes.
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Searching for Solutions

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.6(b) & 3.6(c)

expanded

generated
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Searching for Solutions

A node is assumed to have five components:
State
 Parent-node
Action: action applied to the parent to generate the node

 Path-cost: the cost from the initial state to the node

Depth: the number of steps along the path

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.8

Note. States and node are
different. Different nodes can
contain the same world state.
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Searching for Solutions

The fringe is the collection of nodes that
have been generated but not yet expanded.
 Every element of the fringe is a leaf node.

The search strategy selects the next node
to be expanded from the fringe.
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Searching for Solutions

General tree-search algorithm

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.9
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Searching for Solutions

Measuring performance
 Completeness
Optimality
Time complexity

 usu. in terms of the number of nodes generated

Space complexity
 maximum number of nodes stored in the memory

The complexity is usually expressed in terms of three quantities:

b, branching factor
d, depth of the shallowest goal node
m, maximum length of any path
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Uninformed Search Strategies

Uninformed search (blind search) can only
generate successors and distinguish a goal
state from a non-goal state.

Informed search (heuristic search) knows
whether one non-goal state is “more
promising”than another.

All search strategies are distinguished by
the order in which nodes are expanded.
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Breadth-First Search

BFS can be implemented by calling TREE-
SEARCH with an empty fringe that is a
first-in-first-out (FIFO) queue.
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Breadth-First Search

(1)

(2)

(3)

(4)

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.10

A

B C

C D E

D E F G

Fringe (FIFO queue)
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Breadth-First Search

It is complete, provided the branching
factor b is finite.

The shallowest goal node is not necessarily
optimal.
 It is optimal when all step costs are equal.
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Breadth-First Search

Complexity analysis
Assume branching factor is b, the solution is at

depth d.
 In the worst case, we would expand all but the

last node at level d.

Total number of nodes generated is
b + b2 + b3 + … + bd + (bd+1 –b) = O(bd+1).  Time complexity

Every node that is generated must remain in memory,
because it is either part of the fringe or is an ancestor
of a fringe node.  Space complexity
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Breadth-First Search

1000 P3,523 years101514

10 P35 years101312

101 T129 days101110

1 T31 hours1098

10 G19 minutes1076

106 M11 seconds111,1004

1 megabyte.11 seconds11002

MemoryTimeNodesDepth

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.11

Assume that (1) b = 10; (2) 10,000 nodes can be generated per second; (3) a node
requires 1000 bytes of storage.
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Breadth-First Search

Lessons we learned
The time requirements are a major factor.
The memory requirements are a bigger program

for BFS than is the execution time.

(In general, exponential-complexity search
problems cannot be solved by uninformed
methods for any but the smallest instances.)
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Tea Time (Roomba)

Wiimba
http://www.youtube.com/watch?v=NqbcfSqPnLA

Pacmba
http://www.youtube.com/watch?v=2wsP_nmk_iw

Surfin’ba
http://www.youtube.com/watch?v=tLbprdjTX0w
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Uniform-Cost Search

It expands the node with the lowest path
cost (not step cost!), instead of the
shallowest node.
 It is identical to BFS if all step costs are equal.

It is complete and optimal with any step
cost function

provided the cost of every step is at least
a small positive constant .
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Uniform-Cost Search

Exercise: BFS & UCS

Artificial Intelligence: A Modern
Approach, 2nd ed., Figure 3.2
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Uniform-Cost Search

Worst-case time and space complexity:

O(b1+C*/), where

C* is the cost of the optimal solution, and
 every action costs at least .

0.1

0.1

0.1

0.1

10

goal
It often explores large trees of
small steps before exploring paths
involving large and perhaps useful
steps.
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Depth-First Search

It always expands the deepest node in the
fringe.

After reaching the deepest level, it backs
up the next deepest node that still has
unexplored successors.

It can be implemented by TREE-SEARCH
with a last-in-first-out (LIFO) queue.
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Depth-First Search

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.12

White: in the fringe
Gray: not in the fringe but still required
(parents of nodes in the fringe)
Black: can be removed from memory

A

B
C

E
C

D

E
C

H
I

E
C

I

E
C

K
C

J

K
C

C

fringe
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Depth-First Search

 It has very modest memory requirements since it
only stores
 a single path from the root to the leaf node, and
 the remaining unexpanded sibling nodes.

Once a node is expanded, it can be removed after
all its descendants are fully explored.

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.12
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Depth-First Search

Given branching factor b and maximum
depth m, the memory requirement is bm+1
nodes. (cf. BFS: O(bd))

b = 2
m = 3

bm + 1 = 7

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.12
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Depth-First Search

A variant: Backtracking search
 If each partially expanded node can remember

which successor to generate next, only one
successor is generated at a time.
 Memory requirement O(bm)  O(m)
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Depth-First Search

A variant: Backtracking search
 If we can undo the action when we go back, we

can keep only one state rather than O(m) states.

These techniques are critical to success for
solving problems with large state descriptions
such as robotic assembly.
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Depth-First Search

It is neither complete nor optimal.
 It can make a wrong choice and get stuck going

down a very long (even infinite) path.

In the worst case, it will generate O(bm)
nodes in the search tree.
Note that m can be much larger than d or even

infinite if the tree is unbounded.
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Depth-Limited Search

The problem of unbounded tree can be
alleviated supplying DFS with a depth limit
l.

Unfortunately, it introduces an additional
source of incompleteness if l < d.

It is nonoptimal if l > d.
Time complexity: O(bl)

Space complexity: O(bl)
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Depth-Limited Search

Sometimes depth limits can be set based
on knowledge of the problem.

What value will
you set for l ?

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.2
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Depth-Limited Search

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.13
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Depth-Limited Search

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.15
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Iterative-Deepening DFS

It combines the benefits of DFS and BFS.
 Its memory requirement is modest. (DFS)
 It is complete when the branching factor is

finite. (BFS)
 It is optimal when the path cost is a non-

decreasing function of the depth. (BFS)

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.14
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Iterative-Deepening DFS
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Iterative-Deepening DFS

 It is not as costly as you may imagine.

N(IDS) = (d)b + (d –1)b2 + … + (1)bd

N(BFS) = b + b2 + b3 + … + bd + (bd+1 –b)

If b = 10 and d = 5,
N(IDS) = 123,450 and N(BFS) = 1,111,100.

 In general, IDS is the preferred uninformed
search method when there is a large search space
and the depth of the solution is unknown.
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Iterative-Deepening DFS

It would seem worthwhile to develop an
iterative analog to uniform-cost search.
The idea is to use increasing path-cost limits

instead of increasing depth limits.

The resulting algorithm, called iterative
lengthening search, turns out to incur
substantial overhead compared to uniform-
cost search.
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Bidirectional Search

Motivation: bd/2 + bd/2 is much less than bd.
It is implemented by having one or both of

the searches check each node before
expansion to see if it is in the fringe of the
other search
tree.

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.16
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Bidirectional Search

Whether the algorithm is complete/optimal
depends on the search strategies in both
searches.

Time complexity: O(bd/2) (Assume BFS is used)

 Checking node for membership in the other
search tree can be done in constant time.

Space complexity: O(bd/2) (Assume BFS is used)

At least one of the search tree must be kept in
memory for membership checking.
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Bidirectional Search

In fact, searching backward is not easy.
How can we find the predecessors of a state?

Are actions reversible?
 Is there only one goal state?

 e.g. “clean world”in vacuum world,
“checkmate”in chess.
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Comparison of Uninformed
Search Strategies

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.17

* *

a: complete if b is finite
b: complete if step costs for positive .
*: optimal if step costs are all identical

a a, b a
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Avoiding Repeated States

For some problems, the state space is a
tree, and there is only one path to each
state.
 e.g. the smart formulation of the 8-queens

problem

However, for some problems, we need to be
careful about the possibility of expanding
states that have been expanded.
 e.g. the basic formulation of the 8-queens

problem
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Avoiding Repeated States

For the problems with reversible actions,
repeated states are unavoidable.
 e.g. route-finding problems and sliding-blocks

puzzles

Repeated states can cause a solvable
problem to become unsolvable.
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Avoiding Repeated States

An extreme example:
a state space of size d+1 becomes a tree with 2d

leaves.

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.18
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Avoiding Repeated States

A more realistic example
 about 2d2 distinct states but 4d leaves within d

steps
 for d = 20, this means about a trillion nodes but

only about 800 distinct states
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Avoiding Repeated States

For DFS, the only nodes in memory are
those on the path from the root to the
current node.
 Checking those nodes to the current node can

detect the looping paths.
However, it cannot avoid the exponential

proliferation of nonlooping paths.
There is a fundamental tradeoff between space

and time.
 “Algorithms that forget their history are doomed to

repeat it.”
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Avoiding Repeated States

If an algorithm remembers every state
that it visited, then it can be viewed as
exploring the state-space graph directly.

Artificial Intelligence: A Modern Approach, 2nd ed., Figure 3.19
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Avoiding Repeated States

On problems with many repeated states,
GRAPH-SEARCH is much more efficient
than TREE-SEARCH.
 Its worst-case time and space complexity are

proportional to the size of the state space.
[This may be much smaller than O(bd).]

 Because GRAPH-SEARCH keeps every node in
memory, some searches are infeasible due to
memory limitations.
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Avoiding Repeated States

The optimality of GRAPH-SEARCH
 It needs to check whether a newly discovered

path to a node is better than the original one.
 BFS & UCS are already optimal graph-search

strategies with (constant) step costs.
 For DFS and IDS, we need to do the check.

 If so, it might need to revise the depths and
path costs of that node’s descendants.
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Searching with Partial
Information
What if the knowledge of the states or

actions is incomplete? (Not fully observable or not
deterministic)

Different types of incompleteness lead to
three distinct problem types:
Sensorless problems
 Contingency problems
 Exploration problems (Sec. 4.5)
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Searching with Partial
Information
Sensorless problems (Example: the vacuum world)

The agent has no sensors at all.
It could be in one of several possible initial
states.

 It knows all the effects of its actions.
Each action might lead to one of several
possible successor states.
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Searching with Partial
Information

Left

Suck

Right Suck



38

75
“Solving problems by searching,”Artificial Intelligence, Spring, 2010

Searching with Partial
Information
The agent can reach state 8 with the

action sequence [Left, Suck, Right, Suck]
without knowing the initial state.

“When the world is not fully observable,
the agent must reason about sets of states
(belief state), rather than a single state.”
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Searching with Partial
Information
Searching in the space of belief states

An action is applied to a belief state by unioning
the results of applying the action to each
physical state in the belief state.

A path now connects belief states.
A solution now is a path leading to a belief state,

all of whose members are goal states.

 In general, there are 2S belief states given S
physical states. (But some of them may not be reachable,
see the example on page 74.)
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Searching with Partial
Information
The analysis is essentially the same if the

environment is not deterministic.
We just need to add the various outcomes

of the action to the successor belief state.
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Searching with Partial
Information
Contingency problems

The environment is only partially observable
and/or nondeterministic, but the agent can
obtain new information from sensors after
acting.

 For example, in the vacuum world, the Suck
action sometimes deposits dirt when there is no
dirt already.
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Searching with Partial
Information
Example

Percept [L, Dirty]

Suck Right Then what?

The agent has a location sensor and a “local”dirt sensor.
No fixed action sequence guarantees a solution to this problem.
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Searching with Partial
Information
Many problems in the real world are

contingency problems, because exact
prediction is impossible.

They lead to a different agent design, in
which the agent can act before finding a
guaranteed plan.
This type of interleaving of search and

execution is also useful for exploration and
game playing.



41

81
“Solving problems by searching,”Artificial Intelligence, Spring, 2010

Summary

In the deterministic, observable, and
static environments, the agent can
construct sequences of actions to achieve
its goal –search.

A problem consists of
 the initial state,
 a set of actions,
 a goal test function, and
 a path cost function
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Summary

 Common blind search strategies

 Bidirectional search can be efficient, but not
always applicable and may require too much space.
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Summary

GRAPH-SEARCH is efficient when the
state space is a graph rather than a tree.
But it also suffers from the memory
requirements.

When the environment is partially
observable, the agent can search in the
space of belief states.
Sometimes a single solution can be constructed.
Sometimes a contingency plan is needed.


